114 research outputs found

    The Tightness of the Kesten-Stigum Reconstruction Bound of Symmetric Model with Multiple Mutations

    Full text link
    It is well known that reconstruction problems, as the interdisciplinary subject, have been studied in numerous contexts including statistical physics, information theory and computational biology, to name a few. We consider a 2q2q-state symmetric model, with two categories of qq states in each category, and 3 transition probabilities: the probability to remain in the same state, the probability to change states but remain in the same category, and the probability to change categories. We construct a nonlinear second order dynamical system based on this model and show that the Kesten-Stigum reconstruction bound is not tight when q4q \geq 4.Comment: Accepted, to appear Journal of Statistical Physic

    Magnetocaloric effect and nature of magnetic transition in nanoscale Pr0.5Ca0.5MnO3

    Full text link
    Systematic measurements pertinent to the magnetocaloric effect and nature of magnetic transition around the transition temperature are performed in the 10 nm Pr0.5Ca0.5MnO3 nanoparticles (PCMO10) . Maxwell relation is employed to estimate the change in magnetic entropy. At Curie temperature TC, 83.5 K, the change in magnetic entropy discloses a typical variation with a value 0.57 J/kg K, and is found to be magnetic field dependent. From the area under the curve Delta S vs T, the refrigeration capacity is calculated at TC, 83.5 K and it is found to be 7.01 J/kg. Arrott plots infer that due to the competition between the ferromagnetic and anti ferromagnetic interactions, the magnetic phase transition in PCMO10 is broadly spread over both in temperature as well as in magnetic field coordinates. Upon tuning the particle size, size distribution, morphology, and relative fraction of magnetic phases, it may be possible to enhance the magnetocalorific effect further in PCMO10.Comment: Accepted (Journal of Applied Physics) (In press

    Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3

    Full text link
    We report on isothermal pulsed (20 ms) field magnetization, temperature dependent AC - susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The saturation field for the magnetization of PCMO10 (~ 250 kOe) is found to be reduced in comparison with that of bulk PCMO (~300 kOe). With increasing temperature, the critical magnetic field required to 'melt' the residual charge-ordered phase decays exponentially while the field transition range broadens, which is indicative of a Martensite-like transition. The AC - susceptibility data indicate the presence of a frequency-dependent freezing temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing to the existence of a spin-glass-like disordered magnetic phase. The present results lead to a better understanding of manganite physics and might prove helpful for practical applications

    Oscillatory exchange bias and training effects in nanocrystalline Pr0.5Ca0.5MnO3

    Full text link
    We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n \geq 1
    corecore